-
Notifications
You must be signed in to change notification settings - Fork 2.8k
Closed
Description
Thanks for your error report and we appreciate it a lot.
Checklist
- I have searched related issues but cannot get the expected help.
- The bug has not been fixed in the latest version.
Describe the bug
I'm trying to finetune a food segmentation model found here, on new dataset.
When trying to train the model. I got this error. The batch_size is set to 1.
Thank you in advance for any insights you can give.
Reproduction
-
Command
python train --config SETR_MLA_768x768_80k_jap_finetune.py --gpus 1
-
Configuration file
norm_cfg = dict(type='BN', requires_grad=True)
model = dict(
type='EncoderDecoder',
backbone=dict(
type='VIT_MLA',
model_name='vit_base_patch16_224',
img_size=768,
patch_size=16,
in_chans=3,
embed_dim=768,
depth=12,
num_heads=12,
num_classes=19,
drop_rate=0.0,
norm_cfg=dict(type='BN', requires_grad=True),
pos_embed_interp=True,
align_corners=False,
mla_channels=256,
mla_index=(5, 7, 9, 11)),
decode_head=dict(
type='VIT_MLAHead',
in_channels=1024,
channels=512,
img_size=768,
mla_channels=256,
mlahead_channels=128,
num_classes=104,
norm_cfg=dict(type='BN', requires_grad=True),
align_corners=False,
loss_decode=dict(
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),
auxiliary_head=[
dict(
type='VIT_MLA_AUXIHead',
in_channels=256,
channels=512,
in_index=0,
img_size=768,
num_classes=102,
align_corners=False,
loss_decode=dict(
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)),
dict(
type='VIT_MLA_AUXIHead',
in_channels=256,
channels=512,
in_index=1,
img_size=768,
num_classes=102,
align_corners=False,
loss_decode=dict(
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)),
dict(
type='VIT_MLA_AUXIHead',
in_channels=256,
channels=512,
in_index=2,
img_size=768,
num_classes=102,
align_corners=False,
loss_decode=dict(
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)),
dict(
type='VIT_MLA_AUXIHead',
in_channels=256,
channels=512,
in_index=3,
img_size=768,
num_classes=102,
align_corners=False,
loss_decode=dict(
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4))
])
train_cfg = dict()
test_cfg = dict(mode='slide', crop_size=(768, 768), stride=(512, 512))
dataset_type = 'CustomDataset'
data_root = './data/UECFOODPIXCOMPLETE'
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
crop_size = (768, 768)
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations'),
dict(type='Resize', img_scale=(2049, 1025), ratio_range=(0.5, 2.0)),
dict(type='RandomCrop', crop_size=(768, 768), cat_max_ratio=0.75),
dict(type='RandomFlip', prob=0.5),
dict(type='PhotoMetricDistortion'),
dict(
type='Normalize',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True),
dict(type='Pad', size=(768, 768), pad_val=0, seg_pad_val=255),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img', 'gt_semantic_seg'])
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
img_scale=(2049, 1025),
flip=False,
transforms=[
dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'),
dict(
type='Normalize',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img'])
])
]
data = dict(
samples_per_gpu=1,
workers_per_gpu=0,
train=dict(
type='CustomDataset',
data_root='./data/UECFOODPIXCOMPLETE/',
img_dir='img/train',
ann_dir='ann/train',
pipeline=[
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations'),
dict(
type='Resize', img_scale=(2049, 1025), ratio_range=(0.5, 2.0)),
dict(type='RandomCrop', crop_size=(768, 768), cat_max_ratio=0.75),
dict(type='RandomFlip', prob=0.5),
dict(type='PhotoMetricDistortion'),
dict(
type='Normalize',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True),
dict(type='Pad', size=(768, 768), pad_val=0, seg_pad_val=255),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img', 'gt_semantic_seg'])
]),
val=dict(
type='CustomDataset',
data_root='./data/UECFOODPIXCOMPLETE',
img_dir='img/test',
ann_dir='ann/test',
pipeline=[
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
img_scale=(2049, 1025),
flip=False,
transforms=[
dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'),
dict(
type='Normalize',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img'])
])
]),
test=dict(
type='CustomDataset',
data_root='./data/UECFOODPIXCOMPLETE',
img_dir='img/test',
ann_dir='ann/test',
pipeline=[
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
img_scale=(2049, 1025),
flip=False,
transforms=[
dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'),
dict(
type='Normalize',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img'])
])
]))
log_config = dict(
interval=50, hooks=[dict(type='TextLoggerHook', by_epoch=False)])
dist_params = dict(backend='nccl')
log_level = 'INFO'
load_from = "./models/iter_80000.pth"
resume_from = None
workflow = [('train', 1)]
cudnn_benchmark = True
optimizer = dict(
type='SGD',
lr=0.002,
momentum=0.9,
weight_decay=0.0,
paramwise_cfg=dict(custom_keys=dict(head=dict(lr_mult=10.0))))
optimizer_config = dict()
lr_config = dict(policy='poly', power=0.9, min_lr=0.0001, by_epoch=False)
runner = dict(type='IterBasedRunner', max_iters=80000)
checkpoint_config = dict(by_epoch=False, interval=4000)
evaluation = dict(interval=4000, metric='mIoU')
find_unused_parameters = True
work_dir = 'train_results/'
gpu_ids = range(0, 1)
- Dataset
I used this japanese dataset for food segmentation: https://mm.cs.uec.ac.jp/uecfoodpix/
I go the model from Foodseg repo and tried to finetune it on the japanese data.
Environment
sys.platform: linux
Python: 3.7.7 (default, May 7 2020, 21:25:33) [GCC 7.3.0]
CUDA available: True
GPU 0,1,2,3: NVIDIA GeForce GTX 1080 Ti
CUDA_HOME: /usr/local/cuda
NVCC: Cuda compilation tools, release 10.1, V10.1.243
GCC: gcc (Ubuntu 7.4.0-1ubuntu1~18.04.1) 7.4.0
PyTorch: 1.6.0
PyTorch compiling details: PyTorch built with:
- GCC 7.3
- C++ Version: 201402
- Intel(R) Math Kernel Library Version 2020.0.1 Product Build 20200208 for Intel(R) 64 architecture applications
- Intel(R) MKL-DNN v1.5.0 (Git Hash e2ac1fac44c5078ca927cb9b90e1b3066a0b2ed0)
- OpenMP 201511 (a.k.a. OpenMP 4.5)
- NNPACK is enabled
- CPU capability usage: AVX2
- CUDA Runtime 10.1
- NVCC architecture flags: -gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_61,code=sm_61;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_37,code=compute_37
- CuDNN 7.6.3
- Magma 2.5.2
- Build settings: BLAS=MKL, BUILD_TYPE=Release, CXX_FLAGS= -Wno-deprecated -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -fopenmp -DNDEBUG -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DUSE_VULKAN_WRAPPER -O2 -fPIC -Wno-narrowing -Wall -Wextra -Werror=return-type -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wno-sign-compare -Wno-unused-parameter -Wno-unused-variable -Wno-unused-function -Wno-unused-result -Wno-unused-local-typedefs -Wno-strict-overflow -Wno-strict-aliasing -Wno-error=deprecated-declarations -Wno-stringop-overflow -Wno-error=pedantic -Wno-error=redundant-decls -Wno-error=old-style-cast -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Wno-stringop-overflow, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, USE_CUDA=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=ON, USE_NNPACK=ON, USE_OPENMP=ON, USE_STATIC_DISPATCH=OFF,
TorchVision: 0.7.0
OpenCV: 4.5.3
MMCV: 1.3.0
MMCV Compiler: GCC 7.3
MMCV CUDA Compiler: 10.1
MMSegmentation: 0.11.0+6a60f26
Error traceback
RuntimeError: CUDA out of memory. Tried to allocate 230.00 MiB (GPU 0; 10.92 GiB total capacity; 9.71 GiB already allocated; 190.69 MiB free; 10.14 GiB reserved in total by PyTorch)
Metadata
Metadata
Assignees
Labels
No labels