- 
                Notifications
    
You must be signed in to change notification settings  - Fork 2.8k
 
add pytorch2onnx part #12
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
          
     Merged
      
      
    
  
     Merged
                    Changes from all commits
      Commits
    
    
  File filter
Filter by extension
Conversations
          Failed to load comments.   
        
        
          
      Loading
        
  Jump to
        
          Jump to file
        
      
      
          Failed to load files.   
        
        
          
      Loading
        
  Diff view
Diff view
There are no files selected for viewing
  
    
      This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
      Learn more about bidirectional Unicode characters
    
  
  
    
              
  
    
      This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
      Learn more about bidirectional Unicode characters
    
  
  
    
              
  
    
      This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
      Learn more about bidirectional Unicode characters
    
  
  
    
              
  
    
      This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
      Learn more about bidirectional Unicode characters
    
  
  
    
              | Original file line number | Diff line number | Diff line change | 
|---|---|---|
| @@ -0,0 +1,198 @@ | ||
| import argparse | ||
| from functools import partial | ||
| 
     | 
||
| import mmcv | ||
| import numpy as np | ||
| import onnxruntime as rt | ||
| import torch | ||
| import torch._C | ||
| import torch.serialization | ||
| from mmcv.onnx import register_extra_symbolics | ||
| from mmcv.runner import load_checkpoint | ||
| 
     | 
||
| from mmseg.models import build_segmentor | ||
| 
     | 
||
| torch.manual_seed(3) | ||
| 
     | 
||
| 
     | 
||
| def _convert_batchnorm(module): | ||
| module_output = module | ||
| if isinstance(module, torch.nn.SyncBatchNorm): | ||
| module_output = torch.nn.BatchNorm2d(module.num_features, module.eps, | ||
| module.momentum, module.affine, | ||
| module.track_running_stats) | ||
| if module.affine: | ||
| module_output.weight.data = module.weight.data.clone().detach() | ||
| module_output.bias.data = module.bias.data.clone().detach() | ||
| # keep requires_grad unchanged | ||
| module_output.weight.requires_grad = module.weight.requires_grad | ||
| module_output.bias.requires_grad = module.bias.requires_grad | ||
| module_output.running_mean = module.running_mean | ||
| module_output.running_var = module.running_var | ||
| module_output.num_batches_tracked = module.num_batches_tracked | ||
| for name, child in module.named_children(): | ||
| module_output.add_module(name, _convert_batchnorm(child)) | ||
| del module | ||
| return module_output | ||
| 
     | 
||
| 
     | 
||
| def _demo_mm_inputs(input_shape, num_classes): | ||
| """Create a superset of inputs needed to run test or train batches. | ||
| 
     | 
||
| Args: | ||
| input_shape (tuple): | ||
| input batch dimensions | ||
| num_classes (int): | ||
| number of semantic classes | ||
| """ | ||
| (N, C, H, W) = input_shape | ||
| rng = np.random.RandomState(0) | ||
| imgs = rng.rand(*input_shape) | ||
| segs = rng.randint( | ||
| low=0, high=num_classes - 1, size=(N, 1, H, W)).astype(np.uint8) | ||
| img_metas = [{ | ||
| 'img_shape': (H, W, C), | ||
| 'ori_shape': (H, W, C), | ||
| 'pad_shape': (H, W, C), | ||
| 'filename': '<demo>.png', | ||
| 'scale_factor': 1.0, | ||
| 'flip': False, | ||
| } for _ in range(N)] | ||
| mm_inputs = { | ||
| 'imgs': torch.FloatTensor(imgs).requires_grad_(True), | ||
| 'img_metas': img_metas, | ||
| 'gt_semantic_seg': torch.LongTensor(segs) | ||
| } | ||
| return mm_inputs | ||
| 
     | 
||
| 
     | 
||
| def pytorch2onnx(model, | ||
| input_shape, | ||
| opset_version=11, | ||
| show=False, | ||
| output_file='tmp.onnx', | ||
| verify=False): | ||
| """Export Pytorch model to ONNX model and verify the outputs are same | ||
| between Pytorch and ONNX. | ||
| 
     | 
||
| Args: | ||
| model (nn.Module): Pytorch model we want to export. | ||
| input_shape (tuple): Use this input shape to construct | ||
| the corresponding dummy input and execute the model. | ||
| opset_version (int): The onnx op version. Default: 11. | ||
| show (bool): Whether print the computation graph. Default: False. | ||
| output_file (string): The path to where we store the output ONNX model. | ||
| Default: `tmp.onnx`. | ||
| verify (bool): Whether compare the outputs between Pytorch and ONNX. | ||
| Default: False. | ||
| """ | ||
| model.cpu().eval() | ||
| 
     | 
||
| num_classes = model.decode_head.num_classes | ||
| 
     | 
||
| mm_inputs = _demo_mm_inputs(input_shape, num_classes) | ||
| 
     | 
||
| imgs = mm_inputs.pop('imgs') | ||
| img_metas = mm_inputs.pop('img_metas') | ||
| 
     | 
||
| img_list = [img[None, :] for img in imgs] | ||
| img_meta_list = [[img_meta] for img_meta in img_metas] | ||
| 
     | 
||
| # replace original forward function | ||
| origin_forward = model.forward | ||
| model.forward = partial( | ||
| model.forward, img_metas=img_meta_list, return_loss=False) | ||
| 
     | 
||
| register_extra_symbolics(opset_version) | ||
| with torch.no_grad(): | ||
| torch.onnx.export( | ||
| model, (img_list, ), | ||
| output_file, | ||
| export_params=True, | ||
| keep_initializers_as_inputs=True, | ||
| verbose=show, | ||
| opset_version=opset_version) | ||
| print(f'Successfully exported ONNX model: {output_file}') | ||
| model.forward = origin_forward | ||
| 
     | 
||
| if verify: | ||
| # check by onnx | ||
| import onnx | ||
| onnx_model = onnx.load(output_file) | ||
| onnx.checker.check_model(onnx_model) | ||
| 
     | 
||
| # check the numerical value | ||
| # get pytorch output | ||
| pytorch_result = model(img_list, img_meta_list, return_loss=False)[0] | ||
| 
     | 
||
| # get onnx output | ||
| input_all = [node.name for node in onnx_model.graph.input] | ||
| input_initializer = [ | ||
| node.name for node in onnx_model.graph.initializer | ||
| ] | ||
| net_feed_input = list(set(input_all) - set(input_initializer)) | ||
| assert (len(net_feed_input) == 1) | ||
| sess = rt.InferenceSession(output_file) | ||
| onnx_result = sess.run( | ||
| None, {net_feed_input[0]: img_list[0].detach().numpy()})[0] | ||
| if not np.allclose(pytorch_result, onnx_result): | ||
| raise ValueError( | ||
| 'The outputs are different between Pytorch and ONNX') | ||
| print('The outputs are same between Pytorch and ONNX') | ||
| 
     | 
||
| 
     | 
||
| def parse_args(): | ||
| parser = argparse.ArgumentParser(description='Convert MMDet to ONNX') | ||
| parser.add_argument('config', help='test config file path') | ||
| parser.add_argument('--checkpoint', help='checkpoint file', default=None) | ||
| parser.add_argument('--show', action='store_true', help='show onnx graph') | ||
| parser.add_argument( | ||
| '--verify', action='store_true', help='verify the onnx model') | ||
| parser.add_argument('--output-file', type=str, default='tmp.onnx') | ||
| parser.add_argument('--opset-version', type=int, default=11) | ||
| parser.add_argument( | ||
| '--shape', | ||
| type=int, | ||
| nargs='+', | ||
| default=[256, 256], | ||
| help='input image size') | ||
| args = parser.parse_args() | ||
| return args | ||
| 
     | 
||
| 
     | 
||
| if __name__ == '__main__': | ||
| args = parse_args() | ||
| 
     | 
||
| if len(args.shape) == 1: | ||
| input_shape = (1, 3, args.shape[0], args.shape[0]) | ||
| elif len(args.shape) == 2: | ||
| input_shape = ( | ||
| 1, | ||
| 3, | ||
| ) + tuple(args.shape) | ||
| else: | ||
| raise ValueError('invalid input shape') | ||
| 
     | 
||
| cfg = mmcv.Config.fromfile(args.config) | ||
| cfg.model.pretrained = None | ||
| 
     | 
||
| # build the model and load checkpoint | ||
| segmentor = build_segmentor( | ||
| cfg.model, train_cfg=None, test_cfg=cfg.test_cfg) | ||
| # convert SyncBN to BN | ||
| segmentor = _convert_batchnorm(segmentor) | ||
| 
     | 
||
| num_classes = segmentor.decode_head.num_classes | ||
| 
     | 
||
| if args.checkpoint: | ||
| checkpoint = load_checkpoint( | ||
| segmentor, args.checkpoint, map_location='cpu') | ||
| 
     | 
||
| # conver model to onnx file | ||
| pytorch2onnx( | ||
| segmentor, | ||
| input_shape, | ||
| opset_version=args.opset_version, | ||
| show=args.show, | ||
| output_file=args.output_file, | ||
| verify=args.verify) | 
  Add this suggestion to a batch that can be applied as a single commit.
  This suggestion is invalid because no changes were made to the code.
  Suggestions cannot be applied while the pull request is closed.
  Suggestions cannot be applied while viewing a subset of changes.
  Only one suggestion per line can be applied in a batch.
  Add this suggestion to a batch that can be applied as a single commit.
  Applying suggestions on deleted lines is not supported.
  You must change the existing code in this line in order to create a valid suggestion.
  Outdated suggestions cannot be applied.
  This suggestion has been applied or marked resolved.
  Suggestions cannot be applied from pending reviews.
  Suggestions cannot be applied on multi-line comments.
  Suggestions cannot be applied while the pull request is queued to merge.
  Suggestion cannot be applied right now. Please check back later.
  
    
  
    
Uh oh!
There was an error while loading. Please reload this page.