-
-
Notifications
You must be signed in to change notification settings - Fork 19.3k
Description
Multiple lambdas for the same column return KeyError in DataFrameGroupBy.agg
In [1]: import pandas as pd
In [2]: df = pd.DataFrame({"A": [1, 2]})
In [3]: df.groupby([1, 1]).agg(foo=('A', lambda x: x.max()), bar=('A', lambda x: x.min()))---------------------------------------------------------------------------
KeyError Traceback (most recent call last)
<ipython-input-58-5b7e2c8bacf8> in <module>
3 df = pd.DataFrame({"A": [1, 2]})
4
----> 5 df.groupby([1, 1]).agg(foo=('A', lambda x: x.max()), bar=("A", lambda x: x.min()))
~\AppData\Local\Continuum\anaconda3\envs\insight\lib\site-packages\pandas\core\groupby\generic.py in aggregate(self, arg, *args, **kwargs)
1453 @Appender(_shared_docs["aggregate"])
1454 def aggregate(self, arg=None, *args, **kwargs):
-> 1455 return super().aggregate(arg, *args, **kwargs)
1456
1457 agg = aggregate
~\AppData\Local\Continuum\anaconda3\envs\insight\lib\site-packages\pandas\core\groupby\generic.py in aggregate(self, func, *args, **kwargs)
262
263 if relabeling:
--> 264 result = result[order]
265 result.columns = columns
266
~\AppData\Local\Continuum\anaconda3\envs\insight\lib\site-packages\pandas\core\frame.py in __getitem__(self, key)
2979 if is_iterator(key):
2980 key = list(key)
-> 2981 indexer = self.loc._convert_to_indexer(key, axis=1, raise_missing=True)
2982
2983 # take() does not accept boolean indexers
~\AppData\Local\Continuum\anaconda3\envs\insight\lib\site-packages\pandas\core\indexing.py in _convert_to_indexer(self, obj, axis, is_setter, raise_missing)
1269 # When setting, missing keys are not allowed, even with .loc:
1270 kwargs = {"raise_missing": True if is_setter else raise_missing}
-> 1271 return self._get_listlike_indexer(obj, axis, **kwargs)[1]
1272 else:
1273 try:
~\AppData\Local\Continuum\anaconda3\envs\insight\lib\site-packages\pandas\core\indexing.py in _get_listlike_indexer(self, key, axis, raise_missing)
1076
1077 self._validate_read_indexer(
-> 1078 keyarr, indexer, o._get_axis_number(axis), raise_missing=raise_missing
1079 )
1080 return keyarr, indexer
~\AppData\Local\Continuum\anaconda3\envs\insight\lib\site-packages\pandas\core\indexing.py in _validate_read_indexer(self, key, indexer, axis, raise_missing)
1161 raise KeyError(
1162 "None of [{key}] are in the [{axis}]".format(
-> 1163 key=key, axis=self.obj._get_axis_name(axis)
1164 )
1165 )
KeyError: "None of [MultiIndex([('A', '<lambda>'),\n ('A', '<lambda>')],\n )] are in the [columns]"
Problem description
When using the new groupby aggregation with relabeling API in pandas 0.25.0, a KeyError is raised when the same source column is used with multiple lambdas, as in the example above. This issue isn't present when using multiple lambdas with SeriesGroupBy, as in the release notes.
@TomAugspurger notes also that in DataFrameGroupby.aggregate, order needs to be mangled too.
Expected Output
Out[3]:
foo bar
1 2 2Bonus related issue
If the applied function has the same name, a SpecificationError is raised with the message Function names must be unique, found multiple named mean, even though the kwargs are different:
df.groupby([1, 1]).agg(mean=('A', 'mean'), another_mean=('A', 'mean'))(Obviously this is a silly example, but I encountered it having defined a closure for np.percentile to get around the lambda issue!)
Output of pd.show_versions()
INSTALLED VERSIONS
commit : None
python : 3.7.3.final.0
python-bits : 64
OS : Windows
OS-release : 10
machine : AMD64
processor : Intel64 Family 6 Model 142 Stepping 9, GenuineIntel
byteorder : little
LC_ALL : None
LANG : None
LOCALE : None.None
pandas : 0.25.0
numpy : 1.16.4
pytz : 2019.1
dateutil : 2.8.0
pip : 19.1.1
setuptools : 41.0.1
Cython : None
pytest : None
hypothesis : None
sphinx : 2.0.1
blosc : None
feather : None
xlsxwriter : None
lxml.etree : None
html5lib : None
pymysql : None
psycopg2 : 2.8.2 (dt dec pq3 ext lo64)
jinja2 : 2.10.1
IPython : 7.5.0
pandas_datareader: None
bs4 : None
bottleneck : None
fastparquet : None
gcsfs : None
lxml.etree : None
matplotlib : 3.1.0
numexpr : None
odfpy : None
openpyxl : None
pandas_gbq : None
pyarrow : None
pytables : None
s3fs : None
scipy : 1.3.0
sqlalchemy : 1.3.3
tables : None
xarray : None
xlrd : 1.2.0
xlwt : None
xlsxwriter : None