Skip to content

Store additional usage details from Anthropic #1549

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
22 changes: 18 additions & 4 deletions pydantic_ai_slim/pydantic_ai/models/anthropic.py
Original file line number Diff line number Diff line change
Expand Up @@ -409,13 +409,27 @@ def _map_usage(message: AnthropicMessage | RawMessageStreamEvent) -> usage.Usage
if response_usage is None:
return usage.Usage()

request_tokens = getattr(response_usage, 'input_tokens', None)
# Store all integer-typed usage values in the details dict
response_usage_dict = response_usage.model_dump()
details: dict[str, int] = {}
for key, value in response_usage_dict.items():
if isinstance(value, int):
details[key] = value

# Usage coming from the RawMessageDeltaEvent doesn't have input token data, hence the getattr call
# Tokens are only counted once between input_tokens, cache_creation_input_tokens, and cache_read_input_tokens
# This approach maintains request_tokens as the count of all input tokens, with cached counts as details
request_tokens = (
getattr(response_usage, 'input_tokens', 0)
+ (getattr(response_usage, 'cache_creation_input_tokens', 0) or 0) # These can be missing, None, or int
+ (getattr(response_usage, 'cache_read_input_tokens', 0) or 0)
)

return usage.Usage(
# Usage coming from the RawMessageDeltaEvent doesn't have input token data, hence this getattr
request_tokens=request_tokens,
request_tokens=request_tokens or None,
response_tokens=response_usage.output_tokens,
total_tokens=(request_tokens or 0) + response_usage.output_tokens,
total_tokens=request_tokens + response_usage.output_tokens,
details=details or None,
)


Expand Down
73 changes: 68 additions & 5 deletions tests/models/test_anthropic.py
Original file line number Diff line number Diff line change
Expand Up @@ -141,14 +141,29 @@ async def test_sync_request_text_response(allow_model_requests: None):

result = await agent.run('hello')
assert result.output == 'world'
assert result.usage() == snapshot(Usage(requests=1, request_tokens=5, response_tokens=10, total_tokens=15))

assert result.usage() == snapshot(
Usage(
requests=1,
request_tokens=5,
response_tokens=10,
total_tokens=15,
details={'input_tokens': 5, 'output_tokens': 10},
)
)
# reset the index so we get the same response again
mock_client.index = 0 # type: ignore

result = await agent.run('hello', message_history=result.new_messages())
assert result.output == 'world'
assert result.usage() == snapshot(Usage(requests=1, request_tokens=5, response_tokens=10, total_tokens=15))
assert result.usage() == snapshot(
Usage(
requests=1,
request_tokens=5,
response_tokens=10,
total_tokens=15,
details={'input_tokens': 5, 'output_tokens': 10},
)
)
assert result.all_messages() == snapshot(
[
ModelRequest(parts=[UserPromptPart(content='hello', timestamp=IsNow(tz=timezone.utc))]),
Expand All @@ -167,6 +182,38 @@ async def test_sync_request_text_response(allow_model_requests: None):
)


async def test_async_request_prompt_caching(allow_model_requests: None):
c = completion_message(
[TextBlock(text='world', type='text')],
usage=AnthropicUsage(
input_tokens=3,
output_tokens=5,
cache_creation_input_tokens=4,
cache_read_input_tokens=6,
),
)
mock_client = MockAnthropic.create_mock(c)
m = AnthropicModel('claude-3-5-haiku-latest', provider=AnthropicProvider(anthropic_client=mock_client))
agent = Agent(m)

result = await agent.run('hello')
assert result.output == 'world'
assert result.usage() == snapshot(
Usage(
requests=1,
request_tokens=13,
response_tokens=5,
total_tokens=18,
details={
'input_tokens': 3,
'output_tokens': 5,
'cache_creation_input_tokens': 4,
'cache_read_input_tokens': 6,
},
)
)


async def test_async_request_text_response(allow_model_requests: None):
c = completion_message(
[TextBlock(text='world', type='text')],
Expand All @@ -178,7 +225,15 @@ async def test_async_request_text_response(allow_model_requests: None):

result = await agent.run('hello')
assert result.output == 'world'
assert result.usage() == snapshot(Usage(requests=1, request_tokens=3, response_tokens=5, total_tokens=8))
assert result.usage() == snapshot(
Usage(
requests=1,
request_tokens=3,
response_tokens=5,
total_tokens=8,
details={'input_tokens': 3, 'output_tokens': 5},
)
)


async def test_request_structured_response(allow_model_requests: None):
Expand Down Expand Up @@ -551,7 +606,15 @@ async def my_tool(first: str, second: str) -> int:
]
)
assert result.is_complete
assert result.usage() == snapshot(Usage(requests=2, request_tokens=20, response_tokens=5, total_tokens=25))
assert result.usage() == snapshot(
Usage(
requests=2,
request_tokens=20,
response_tokens=5,
total_tokens=25,
details={'input_tokens': 20, 'output_tokens': 5},
)
)
assert tool_called


Expand Down