Skip to content

Parameterized XLMR and Roberta model integration tests #1496

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 6 commits into from
Jan 10, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
79 changes: 34 additions & 45 deletions test/integration_tests/test_models.py
Original file line number Diff line number Diff line change
@@ -1,67 +1,56 @@
import torch
import torchtext
from parameterized import parameterized
from torchtext.models import (
XLMR_BASE_ENCODER,
XLMR_LARGE_ENCODER,
ROBERTA_BASE_ENCODER,
ROBERTA_LARGE_ENCODER,
)

from ..common.assets import get_asset_path
from ..common.torchtext_test_case import TorchtextTestCase

TEST_MODELS_PARAMETERIZED_ARGS = [
("xlmr.base.output.pt", "XLMR base Model Comparison", XLMR_BASE_ENCODER),
("xlmr.large.output.pt", "XLMR base Model Comparison", XLMR_LARGE_ENCODER),
(
"roberta.base.output.pt",
"Roberta base Model Comparison",
ROBERTA_BASE_ENCODER,
),
(
"roberta.large.output.pt",
"Roberta base Model Comparison",
ROBERTA_LARGE_ENCODER,
),
]

class TestModels(TorchtextTestCase):
def test_roberta_base(self):
asset_path = get_asset_path("roberta.base.output.pt")
test_text = "Roberta base Model Comparison"

roberta_base = torchtext.models.ROBERTA_BASE_ENCODER
transform = roberta_base.transform()
model = roberta_base.get_model()
model = model.eval()

model_input = torch.tensor(transform([test_text]))
actual = model(model_input)
expected = torch.load(asset_path)
torch.testing.assert_close(actual, expected)

def test_roberta_base_jit(self):
asset_path = get_asset_path("roberta.base.output.pt")
test_text = "Roberta base Model Comparison"

roberta_base = torchtext.models.ROBERTA_BASE_ENCODER
transform = roberta_base.transform()
transform_jit = torch.jit.script(transform)
model = roberta_base.get_model()
model = model.eval()
model_jit = torch.jit.script(model)

model_input = torch.tensor(transform_jit([test_text]))
actual = model_jit(model_input)
expected = torch.load(asset_path)
torch.testing.assert_close(actual, expected)

def test_roberta_large(self):
asset_path = get_asset_path("roberta.large.output.pt")
test_text = "Roberta base Model Comparison"
class TestModels(TorchtextTestCase):
@parameterized.expand(TEST_MODELS_PARAMETERIZED_ARGS)
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I think you can go further to make the jit part parameterized as well.

You can parameterize the behavior around jitting in test_model, then make a Cartesian product of TEST_MODELS_PARAMETERIZED_ARGS and jit=True|False to run all the tests.

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Thanks for the feedback. Will do this in a followup PR by pulling in the nested_params helper method from torchaudio.

def test_model(self, expected_asset_name, test_text, model_bundler):
expected_asset_path = get_asset_path(expected_asset_name)

roberta_large = torchtext.models.ROBERTA_LARGE_ENCODER
transform = roberta_large.transform()
model = roberta_large.get_model()
transform = model_bundler.transform()
model = model_bundler.get_model()
model = model.eval()

model_input = torch.tensor(transform([test_text]))
actual = model(model_input)
expected = torch.load(asset_path)
expected = torch.load(expected_asset_path)
torch.testing.assert_close(actual, expected)

def test_roberta_large_jit(self):
asset_path = get_asset_path("roberta.large.output.pt")
test_text = "Roberta base Model Comparison"
@parameterized.expand(TEST_MODELS_PARAMETERIZED_ARGS)
def test_model_jit(self, expected_asset_name, test_text, model_bundler):
expected_asset_path = get_asset_path(expected_asset_name)

roberta_large = torchtext.models.ROBERTA_LARGE_ENCODER
transform = roberta_large.transform()
transform = model_bundler.transform()
transform_jit = torch.jit.script(transform)
model = roberta_large.get_model()
model = model_bundler.get_model()
model = model.eval()
model_jit = torch.jit.script(model)

model_input = torch.tensor(transform_jit([test_text]))
actual = model_jit(model_input)
expected = torch.load(asset_path)
expected = torch.load(expected_asset_path)
torch.testing.assert_close(actual, expected)
64 changes: 0 additions & 64 deletions test/models/test_models.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,7 +3,6 @@
from torch.nn import functional as torch_F
import copy
from ..common.torchtext_test_case import TorchtextTestCase
from ..common.assets import get_asset_path


class TestModules(TorchtextTestCase):
Expand Down Expand Up @@ -37,69 +36,6 @@ def test_self_attn_mask(self):


class TestModels(TorchtextTestCase):
def test_xlmr_base_output(self):
asset_name = "xlmr.base.output.pt"
asset_path = get_asset_path(asset_name)
xlmr_base = torchtext.models.XLMR_BASE_ENCODER
model = xlmr_base.get_model()
model = model.eval()
model_input = torch.tensor([[0, 43523, 52005, 3647, 13293, 113307, 40514, 2]])
actual = model(model_input)
expected = torch.load(asset_path)
torch.testing.assert_close(actual, expected)

def test_xlmr_base_jit_output(self):
asset_name = "xlmr.base.output.pt"
asset_path = get_asset_path(asset_name)
xlmr_base = torchtext.models.XLMR_BASE_ENCODER
model = xlmr_base.get_model()
model = model.eval()
model_jit = torch.jit.script(model)
model_input = torch.tensor([[0, 43523, 52005, 3647, 13293, 113307, 40514, 2]])
actual = model_jit(model_input)
expected = torch.load(asset_path)
torch.testing.assert_close(actual, expected)

def test_xlmr_large_output(self):
asset_name = "xlmr.large.output.pt"
asset_path = get_asset_path(asset_name)
xlmr_base = torchtext.models.XLMR_LARGE_ENCODER
model = xlmr_base.get_model()
model = model.eval()
model_input = torch.tensor([[0, 43523, 52005, 3647, 13293, 113307, 40514, 2]])
actual = model(model_input)
expected = torch.load(asset_path)
torch.testing.assert_close(actual, expected)

def test_xlmr_large_jit_output(self):
asset_name = "xlmr.large.output.pt"
asset_path = get_asset_path(asset_name)
xlmr_base = torchtext.models.XLMR_LARGE_ENCODER
model = xlmr_base.get_model()
model = model.eval()
model_jit = torch.jit.script(model)
model_input = torch.tensor([[0, 43523, 52005, 3647, 13293, 113307, 40514, 2]])
actual = model_jit(model_input)
expected = torch.load(asset_path)
torch.testing.assert_close(actual, expected)

def test_xlmr_transform(self):
xlmr_base = torchtext.models.XLMR_BASE_ENCODER
transform = xlmr_base.transform()
test_text = "XLMR base Model Comparison"
actual = transform([test_text])
expected = [[0, 43523, 52005, 3647, 13293, 113307, 40514, 2]]
torch.testing.assert_close(actual, expected)

def test_xlmr_transform_jit(self):
xlmr_base = torchtext.models.XLMR_BASE_ENCODER
transform = xlmr_base.transform()
transform_jit = torch.jit.script(transform)
test_text = "XLMR base Model Comparison"
actual = transform_jit([test_text])
expected = [[0, 43523, 52005, 3647, 13293, 113307, 40514, 2]]
torch.testing.assert_close(actual, expected)

def test_roberta_bundler_build_model(self):
from torchtext.models import RobertaEncoderConf, RobertaClassificationHead, RobertaModel, RobertaModelBundle
dummy_encoder_conf = RobertaEncoderConf(vocab_size=10, embedding_dim=16, ffn_dimension=64, num_attention_heads=2, num_encoder_layers=2)
Expand Down