Skip to content

yin-gz/group-link-prediction

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

18 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Beyond Individuals: Modeling Mutual and Multiple Interactions for Inductive Link Prediction between Groups

Dependencies

  • Compatible with PyTorch 1.8 and Python 3.8.
  • Dependencies can be installed using requirements.txt.

Preparation

  • Make directories: ./checkpoints, ./log, ./wandb

Datasets

  • We conduct experiments on three datasets: MAG-G, Aminer-G, and Weeplaces-G. The datasets can be downloaded here
  • The datasets should be put in ./data directory.

Training and Evaluating a model:

  • Params for reproducing the reported GE+MMAN results are saved in ./config. Please run
    #### Method: GE+MMAN
    # MAG-G
    python run_academic_group.py -config_file MAG-G.yml
    
    # Aminer-G
    python run_academic_group.py -config_file Aminer-G.yml
    
    # Weeplaces-G
    python run_weeplaces.py -config_file Weeplaces-G.yml
  • Commands for reproducing the other methods (take MAG-G dataset as a example):
  # -----------Plain GNN-based Encoders----------- #
  # GCN
  python run_academic_group.py -dataset MAG-G -only_GE True -graph_based GraphSage -score_method MLP
  
  # -----------GE with Aggregating Methods----------- #
  # GE-AVG
  python run_academic_group.py -dataset MAG-G -only_GE False -graph_based GraphSage -i2g_method avg -score_method MLP
  
  # GE-MMAN
  python run_academic_group.py -dataset MAG-G -only_GE False -graph_based GraphSage -i2g_method MMAN -view_num 4 -score_method mv_score
  • -only_GE denotes only using the GNN-based Encoders without aggregators.
  • -graph_based denotes GNN encoder type.
  • -i2g_method denotes the aggragating method. It can take the following values:
    • avg/degree/att/set2set/MMAN/MAB
  • -score_method is some name given for the run (used for storing model parameters)
    • mv_score for MMAN
    • MLP for other aggragating methods
  • Rest of the arguments can be listed using python run_academic_group.py -h or python run_weeplaces.py -h

Citation:

Please cite the following paper if you use this code in your work.

@inproceedings{
    Yin2023beyondindividuals,
    title={Beyond Individuals: Modeling Mutual and Multiple Interactions for Inductive Link Prediction between Groups},
    author={Gongzhu Yin and Xing Wang and Hongli Zhang and Chao Meng and Yuchen Yang and Ku Lu and Yi Luo},
    booktitle={ACM International Conference on Web Search and Data Mining},
    year={2023}
}

For any questions or suggestions please contact Gongzhu Yin ([email protected]).

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •  

Languages