Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Hands-On Automated Machine Learning

You're reading from   Hands-On Automated Machine Learning A beginner's guide to building automated machine learning systems using AutoML and Python

Arrow left icon
Product type Paperback
Published in Apr 2018
Publisher Packt
ISBN-13 9781788629898
Length 282 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
 Das Das
Author Profile Icon Das
Das
 Mert Cakmak Mert Cakmak
Author Profile Icon Mert Cakmak
Mert Cakmak
Arrow right icon
View More author details
Toc

Table of Contents (10) Chapters Close

Preface 1. Introduction to AutoML FREE CHAPTER 2. Introduction to Machine Learning Using Python 3. Data Preprocessing 4. Automated Algorithm Selection 5. Hyperparameter Optimization 6. Creating AutoML Pipelines 7. Dive into Deep Learning 8. Critical Aspects of ML and Data Science Projects 9. Other Books You May Enjoy

Autoencoders

An autoencoder is a type of DL which can be used for unsupervised learning. It is similar to other dimensionality reduction techniques such as Principal Component Analysis (PCA) which we studied earlier. However, PCA projects data from higher dimensions to lower dimensions using linear transformation, but autoencoders use non-linear transformations.

In an autoencoder, there are two parts to its structure:

  • Encoder: This part compresses the input into a fewer number of elements or bits. The input is compressed to the maximum point, which is known as latent space or bottleneck. These compressed bits are known as encoded bits.
  • Decoder: The decoder tries to reconstruct the input based on the encoded bits. If the decoder can reproduce the exact input from the encoded bits, then we can say that there was a perfect encoding. However, it is an ideal case scenario and does...
lock icon The rest of the chapter is locked
Visually different images
CONTINUE READING
83
Tech Concepts
36
Programming languages
73
Tech Tools
Icon Unlimited access to the largest independent learning library in tech of over 8,000 expert-authored tech books and videos.
Icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Icon 50+ new titles added per month and exclusive early access to books as they are being written.
Hands-On Automated Machine Learning
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime
Modal Close icon
Modal Close icon