• Focuses on more efficient natural language processing using TensorFlow
• Covers NLP as a field in its own right to improve understanding for choosing TensorFlow tools and other deep learning approaches
• Provides choices for how to process and evaluate large unstructured text datasets
• Learn to apply the TensorFlow toolbox to specific tasks in the most interesting field in artificial intelligence
Description
Natural language processing (NLP) supplies the majority of data available to deep learning applications, while TensorFlow is the most important deep learning framework currently available. Natural Language Processing with TensorFlow brings TensorFlow and NLP together to give you invaluable tools to work with the immense volume of unstructured data in today’s data streams, and apply these tools to specific NLP tasks.
Thushan Ganegedara starts by giving you a grounding in NLP and TensorFlow basics. You'll then learn how to use Word2vec, including advanced extensions, to create word embeddings that turn sequences of words into vectors accessible to deep learning algorithms. Chapters on classical deep learning algorithms, like convolutional neural networks (CNN) and recurrent neural networks (RNN), demonstrate important NLP tasks as sentence classification and language generation. You will learn how to apply high-performance RNN models, like long short-term memory (LSTM) cells, to NLP tasks. You will also explore neural machine translation and implement a neural machine translator.
After reading this book, you will gain an understanding of NLP and you'll have the skills to apply TensorFlow in deep learning NLP applications, and how to perform specific NLP tasks.
Who is this book for?
This book is for Python developers with a strong interest in deep learning, who want to learn how to leverage TensorFlow to simplify NLP tasks. Fundamental Python skills are assumed, as well as some knowledge of machine learning and undergraduate-level calculus and linear algebra. No previous natural language processing experience required, although some background in NLP or computational linguistics will be helpful.
What you will learn
• Core concepts of NLP and various approaches to natural language processing
• How to solve NLP tasks by applying TensorFlow functions to create neural networks
• Strategies to process large amounts of data into word representations that can be used by deep learning applications
• Techniques for performing sentence classification and language generation using CNNs and RNNs
• About employing state-of-the art advanced RNNs, like long short-term memory, to solve complex text generation tasks
• How to write automatic translation programs and implement an actual neural machine translator from scratch
• The trends and innovations that are paving the future in NLP
I literally like this book and I am in love with this book I would suggest everyone just read because I have actually passed my exam because of this book thanks Amazon
Amazon Verified review
hawkinflightAug 06, 2022
5
I like that the book covers modern techniques such as Word2Vec, GloVe, ELMO, LSTMs, GRUs, NMT, and transformers/BERT architecture. The use-cases are interesting: 1)classifying sentences with CNNs 2)identifying named entities with RNNs 3)translation and chatbots using NMT and the attention mechanism 4)question and answer problem using transformers and BERT architecture 5)image captioning with transformers. I also like that the results are evaluated qualitatively and quantitatively and that metrics are proposed. I look forward to working with the code accompanying the book to try out the transformers. Huge thanks to the author - great book, great resource!
Amazon Verified review
drei34Mar 21, 2023
5
This book is fantastic for a number of reasons, not just bc of tensorflow code. For example, I don't use tf much and mostly do pytorch but I found quite a few topics explained here better than in papers or in "textbooks". One example: why do LSTMs solve the vanishing gradient problem better than RNN models? This book has some math derivations on this, you will not find that even in more hardcore (Goodfellow, etc) type books. A GREAT book - read it even if you know the material or do pytorch, you might find something new just in the math/examples not the code.
Amazon Verified review
PlaceholderSep 06, 2022
5
The media could not be loaded. Thank you so much Amazon for giving me this book and this helps me a lot to pass the exam I have fully gone through by this book and other books as well but this was the best❤️❤️
Amazon Verified review
Akshit shahAug 10, 2022
5
This book covers all the areas of classic NLP - Word2vec, Word Vectors, CNNs, RNNs, Sequence-to-Sequence Learning, and of course Transformers There is enough explanation and comments in the code for me to follow along without getting lost. also, the results are evaluated qualitatively and quantitatively and metrics are proposed. I look forward to working with the code accompanying the book to try out the transformers. Huge thanks to the author - great book, great resource!
Thushan is a seasoned ML practitioner with 4+ years of experience in the industry. Currently he is a senior machine learning engineer at Canva; an Australian startup that founded the online visual design software, Canva, serving millions of customers. His efforts are particularly concentrated in the search and recommendations group working on both visual and textual content. Prior to Canva, Thushan was a senior data scientist at QBE Insurance; an Australian Insurance company. Thushan was developing ML solutions for use-cases related to insurance claims. He also led efforts in developing a Speech2Text pipeline there. He obtained his PhD specializing in machine learning from the University of Sydney in 2018.
Where there is an eBook version of a title available, you can buy it from the book details for that title. Add either the standalone eBook or the eBook and print book bundle to your shopping cart. Your eBook will show in your cart as a product on its own. After completing checkout and payment in the normal way, you will receive your receipt on the screen containing a link to a personalised PDF download file. This link will remain active for 30 days. You can download backup copies of the file by logging in to your account at any time.
If you already have Adobe reader installed, then clicking on the link will download and open the PDF file directly. If you don't, then save the PDF file on your machine and download the Reader to view it.
Please Note: Packt eBooks are non-returnable and non-refundable.
Packt eBook and Licensing When you buy an eBook from Packt Publishing, completing your purchase means you accept the terms of our licence agreement. Please read the full text of the agreement. In it we have tried to balance the need for the ebook to be usable for you the reader with our needs to protect the rights of us as Publishers and of our authors. In summary, the agreement says:
You may make copies of your eBook for your own use onto any machine
You may not pass copies of the eBook on to anyone else
How can I make a purchase on your website?
If you want to purchase a video course, eBook or Bundle (Print+eBook) please follow below steps:
Register on our website using your email address and the password.
Search for the title by name or ISBN using the search option.
Select the title you want to purchase.
Choose the format you wish to purchase the title in; if you order the Print Book, you get a free eBook copy of the same title.
Proceed with the checkout process (payment to be made using Credit Card, Debit Cart, or PayPal)
Where can I access support around an eBook?
If you experience a problem with using or installing Adobe Reader, the contact Adobe directly.
To view the errata for the book, see www.packtpub.com/support and view the pages for the title you have.
To view your account details or to download a new copy of the book go to www.packtpub.com/account
Our eBooks are currently available in a variety of formats such as PDF and ePubs. In the future, this may well change with trends and development in technology, but please note that our PDFs are not Adobe eBook Reader format, which has greater restrictions on security.
You will need to use Adobe Reader v9 or later in order to read Packt's PDF eBooks.
What are the benefits of eBooks?
You can get the information you need immediately
You can easily take them with you on a laptop
You can download them an unlimited number of times
You can print them out
They are copy-paste enabled
They are searchable
There is no password protection
They are lower price than print
They save resources and space
What is an eBook?
Packt eBooks are a complete electronic version of the print edition, available in PDF and ePub formats. Every piece of content down to the page numbering is the same. Because we save the costs of printing and shipping the book to you, we are able to offer eBooks at a lower cost than print editions.
When you have purchased an eBook, simply login to your account and click on the link in Your Download Area. We recommend you saving the file to your hard drive before opening it.
For optimal viewing of our eBooks, we recommend you download and install the free Adobe Reader version 9.