Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Intelligent Projects Using Python
Intelligent Projects Using Python

Intelligent Projects Using Python: 9 real-world AI projects leveraging machine learning and deep learning with TensorFlow and Keras

eBook
Mex$648.99 Mex$721.99
Paperback
Mex$902.99
Subscription
Free Trial

What do you get with Print?

Product feature icon Instant access to your digital copy whilst your Print order is Shipped
Product feature icon Paperback book shipped to your preferred address
Product feature icon Redeem a companion digital copy on all Print orders
Product feature icon Access this title in our online reader with advanced features
Product feature icon DRM FREE - Read whenever, wherever and however you want
Product feature icon AI Assistant (beta) to help accelerate your learning
OR
Modal Close icon
Payment Processing...
tick Completed

Shipping Address

Billing Address

Shipping Methods
Table of content icon View table of contents Preview book icon Preview Book

Intelligent Projects Using Python

Foundations of Artificial Intelligence Based Systems

Artificial intelligence (AI) has been at the forefront of technology over the last few years, and has made its way into mainstream applications, such as expert systems, personalized applications on mobile devices, machine translation in natural language processing, chatbots, self-driving cars, and so on. The definition of AI, however, has been a subject of dispute for quite a while. This is primarily because of the so-called AI effect that categorizes work that has already been solved through AI in the past as non-AI. According to a famous computer scientist:

Intelligence is whatever machines haven't done yet.
– Larry Tesler

Building an intelligent system that could play chess was considered AI until the IBM computer Deep Blue defeated Gary Kasparov in 1996. Similarly, problems dealing with vision, speech, and natural language were once considered complex, but due to the AI effect, they would now only be considered computation rather than true AI. Recently, AI has become able to solve complex mathematical problems, compose music, and create abstract paintings, and these capabilities of AI are ever increasing. The point in the future at which AI systems will equal human levels of intelligence has been referred to by scientists as the AI singularity. The question of whether machines will ever actually reach human levels of intelligence is very intriguing.

Many would argue that machines will never reach human levels of intelligence, since the AI logic by which they learn or perform intelligent tasks is programmed by humans, and they lack the consciousness and self-awareness that humans possess. However, several researchers have proposed the alternative idea that human consciousness and self-awareness are like infinite loop programs that learn from their surroundings through feedback. Hence, it may be possible to program consciousness and self-awareness into machines, too. For now, however, we will leave this philosophical side of AI for another day, and will simply discuss AI as we know it.

Put simply, AI can be defined as the ability of a machine (generally, a computer or robot) to perform tasks with human-like intelligence, possessing such as attributes the ability to reason, learn from experience, generalize, decipher meanings, and possess visual perception. We will stick to this more practical definition rather than looking at the philosophical connotations raised by the AI effect and the prospect of the AI singularity. While there may be debates about what AI can achieve and what it cannot, recent success stories of AI-based systems have been overwhelming. A few of the more recent mainstream applications of AI are depicted in the following diagram:

Figure 1.1: Applications of AI

This book will cover the detailed implementation of projects from all of the core disciplines of AI, outlined as follows:

  • Transfer learning based AI systems
  • Natural language based AI systems
  • Generative adversarial network (GAN) based applications
  • Expert systems
  • Video-to-text translation applications
  • AI-based recommender systems
  • AI-based mobile applications
  • AI-based chatbots
  • Reinforcement learning applications

In this chapter, we will briefly touch upon the concepts involving machine learning and deep learning that will be required to implement the projects that will be covered in the following chapters.

Neural networks

Neural networks are machine learning models that are inspired by the human brain. They consist of neural processing units they are interconnected with one another in a hierarchical fashion. These neural processing units are called artificial neurons, and they perform the same function as axons in a human brain. In a human brain, dendrites receive input from neighboring neurons, and attenuate or magnify the input before transmitting it on to the soma of the neuron. In the soma of the neuron, these modified signals are added together and passed on to the axon of the neuron. If the input to the axon is over a specified threshold, then the signal is passed on to the dendrites of the neighboring neurons.

An artificial neuron loosely works perhaps on the same logic as that of a biological neuron. It receives input from neighboring neurons. The input is scaled by the input connections of the neurons and then added together. Finally, the summed input is passed through an activation function whose output is passed on to the neurons in the next layer.

A biological neuron and an artificial neuron are illustrated in the following diagrams for comparison:

Figure 1.2: Biological neuron

An artificial neuron are illustrated in the following diagram:

Figure 1.3: Artificial neuron

Now, let's look at the structure of an artificial neural network, as illustrated in the following diagram:

Figure 1.4: Artificial neural network

The input, x ∈ RN, passes through successive layers of neural units, arranged in a hierarchical fashion. Each neuron in a specific layer receives an input from the neurons of the preceding layers, attenuated or amplified by the weights of the connections between them. The weight, , corresponds to the weight connection between the ith neuron in layer l and the jth neuron in layer (l+1). Also, each neuron unit, i, in a specific layer, l, is accompanied by a bias, . The neural network predicts the output, , for the input vector, x ∈ RN. If the actual label of the data is y, where y takes continuous values, then the neuron network learns the weights and biases by minimizing the prediction error, . Of course, the error has to be minimized for all of the labeled data points: (xi, yi)∀i ∈ 1, 2, . . . m.

If we denote the set of weights and biases by one common vector, W, and the total error in the prediction is represented by C, then through the training process, the estimated W can be expressed as follows:

Also, the predicted output, , can be represented by a function of the input, x, parameterized by the weight vector, W, as follows:

Such a formula for predicting the continuous values of the output is called a regression problem.

For a two-class binary classification, cross-entropy loss is minimized instead of the squared error loss, and the network outputs the probability of the positive class instead of the output. The cross-entropy loss can be represented as follows:

Here, pi is the predicted probability of the output class, given the input x, and can be represented as a function of the input, x, parameterized by the weight vector, as follows:

In general, for multi-class classification problems (say, of n classes), the cross-entropy loss is given via the following:

Here, is the output label of the jth class, for the ith datapoint.

Neural activation units

Several kinds of neural activation units are used in neural networks, depending on the architecture and the problem at hand. We will discuss the most commonly used activation functions, as these play an important role in determining the network architecture and performance. Linear and sigmoid unit activation functions were primarily used in artificial neural networks until rectified linear units (ReLUs), invented by Hinton et al., revolutionized the performance of neural networks.

Linear activation units

A linear activation unit outputs the total input to the neuron that is attenuated, as shown in the following graph:

Figure 1.5: Linear neuron

If x is the total input to the linear activation unit, then the output, y, can be represented as follows:

Sigmoid activation units

The output of the sigmoid activation unit, y, as a function of its total input, x, is expressed as follows:

Since the sigmoid activation unit response is a nonlinear function, as shown in the following graph, it is used to introduce nonlinearity in the neural network:

Figure 1.6: Sigmoid activation function

Any complex process in nature is generally nonlinear in its input-output relation, and hence, we need nonlinear activation functions to model them through neural networks. The output probability of a neural network for a two-class classification is generally given by the output of a sigmoid neural unit, since it outputs values from zero to one. The output probability can be represented as follows:

Here, x represents the total input to the sigmoid unit in the output layer.

The hyperbolic tangent activation function

The output, y, of a hyperbolic tangent activation function (tanh) as a function of its total input, x, is given as follows:

The tanh activation function outputs values in the range [-1, 1], as you can see in the following graph:

Figure 1.7: Tanh activation function

One thing to note is that both the sigmoid and the tanh activation functions are linear within a small range of the input, beyond which the output saturates. In the saturation zone, the gradients of the activation functions (with respect to the input) are very small or close to zero; this means that they are very prone to the vanishing gradient problem. As you will see later on, neural networks learn from the backpropagation method, where the gradient of a layer is dependent on the gradients of the activation units in the succeeding layers, up to the final output layer. Therefore, if the units in the activation units are working in the saturation region, much less of the error is backpropagated to the early layers of the neural network. Neural networks minimize the prediction error in order to learn the weights and biases (W) by utilizing the gradients. This means that, if the gradients are small or vanish to zero, then the neural network will fail to learn these weights properly.

Rectified linear unit (ReLU)

The output of a ReLU is linear when the total input to the neuron is greater than zero, and the output is zero when the total input to the neuron is negative. This simple activation function provides nonlinearity to a neural network, and, at the same time, it provides a constant gradient of one with respect to the total input. This constant gradient helps to keep the neural network from developing saturating or vanishing gradient problems, as seen in activation functions, such as sigmoid and tanh activation units. The ReLU function output (as shown in Figure 1.8) can be expressed as follows:

The ReLU activation function can be plotted as follows:

Figure 1.8: ReLU activation function

One of the constraints for ReLU is its zero gradients for negative values of input. This may slow down the training, especially at the initial phase. Leaky ReLU activation functions (as shown in Figure 1.9) can be useful in this scenario, where the output and gradients are nonzero, even for negative values of the input. A leaky ReLU output function can be expressed as follows:

The parameter is to be provided for leaky ReLU activation functions, whereas for a parametric ReLU, is a parameter that the neural network will learn through training. The following graph shows the output of the leaky ReLU activation function:

Figure 1.9: Leaky ReLU activation function

The softmax activation unit

The softmax activation unit is generally used to output the class probabilities, in the case of a multi-class classification problem. Suppose that we are dealing with an n class classification problem, and the total input corresponding to the classes is given by the following:

In this case, the output probability of the kth class of the softmax activation unit is given by the following formula:

There are several other activation functions, mostly variations of these basic versions. We will discuss them as we encounter them in the different projects that we will cover in the following chapters.

The backpropagation method of training neural networks

In the backpropagation method, neural networks are trained through the gradient descent technique, where the combined weights vector, W, is updated iteratively, as follows:

Here, η is the learning rate, W(t+1) and W(t) are the weight vectors at iterations (t+1) and (t), respectively, and ∇C(W(t)) is the gradient of the cost function or the error function, with respect to the weight vector, W, at iteration (t). The previous algorithm for an individual weight or bias generalized by w ∈ W can be represented as follows:

As you can gather from the previous expressions, the heart of the gradient descent method of learning relies on computing the gradient of the cost function or the error function, with respect to each weight.

From the chain rule of differentiation, we know that if we have y = f(x), z = f(y), then the following is true:

This expression can be generalized to any number of variables. Now, let's take a look at a very simple neural network, as illustrated in the following diagram, in order to understand the backpropagation algorithm:

Figure 1.10: A network illustrating backpropagation

Let the input to the network be a two-dimensional vector, x = [x1 x2]T, and the corresponding output label and prediction be and , respectively. Also, let's assume that all of the activation units in the neural network are sigmoids. Let the generalized weight connecting any unit i in layer (l-1) to unit j in layer l be denoted by , while the bias in any unit i in layer l should be denoted by . Let's derive the gradient for one data point; the total gradient can be computed as the sum of all of the data points used in training (or in a mini-batch). If the output is continuous, then the loss function, C, can be chosen as the square of the error in prediction:

The weights and biases of the network, cumulatively represented by the set W, can be determined by minimizing the cost function with respect to the W vector, which is as follows:

To perform the minimization of the cost function iteratively through gradient descent, we need to compute the gradient of the cost function with respect to each weight, w ∈ W, as follows:

Now that we have everything that we need, let's compute the gradient of the cost function, C, with respect to the weight, . Using the chain rule of differentiation, we get the following:

Now let's look at the following formula:

As you can see in the previous expression, the derivative is nothing but the error in prediction. Generally, the output unit activation function is linear in the case of regression problems, and hence the following expression applies:

So, if we were to compute the gradient of the cost function with respect to the total input at the output unit, it would be . This is still equal to the error in prediction of the output.

The total input at the output unit, as a function of the incoming weights and activations, can be expressed as follows:

This means that, and the derivative of the cost function with respect to the weight, , contributing to the input of the output layer is given via the following:

As you can see, the error is backpropagated in computing the gradient of the cost function, with respect to the weights in the layers preceding the final output layer. This becomes more obvious when we compute the gradient of the cost function with respect to the generalized weight, . Let's take the weight corresponding to j=1 and k=2; that is, . The gradient of the cost function, C, with respect to this weight can be expressed as follows:

Now, , which means that, .

So, once we have figured out the gradient of the cost function with respect to the total input to a neuron as , the gradient of any weight, w, contributing to the total input, s, can be obtained by simply multiplying the activation, z, associated with the weight.

Now, the gradient of the cost function with respect to the total input, , can be derived by chain rule again, as follows:

Since all of the units of the neural network (except for the output unit) are sigmoid activation functions, the following is the case:

Combining (1), (2), and (3), we get the following:

In the preceding derived gradient expressions, you can see that the error in prediction, , is backpropagated by combining it with the relevant activations and weights (as per the chain rule of differentiation) for computing the gradients of the weights at each layer, hence, the name backpropagation in AI nomenclature.

Left arrow icon Right arrow icon
Download code icon Download Code

Key benefits

  • A go-to guide to help you master AI algorithms and concepts
  • 8 real-world projects tackling different challenges in healthcare, e-commerce, and surveillance
  • Use TensorFlow, Keras, and other Python libraries to implement smart AI applications

Description

This book will be a perfect companion if you want to build insightful projects from leading AI domains using Python. The book covers detailed implementation of projects from all the core disciplines of AI. We start by covering the basics of how to create smart systems using machine learning and deep learning techniques. You will assimilate various neural network architectures such as CNN, RNN, LSTM, to solve critical new world challenges. You will learn to train a model to detect diabetic retinopathy conditions in the human eye and create an intelligent system for performing a video-to-text translation. You will use the transfer learning technique in the healthcare domain and implement style transfer using GANs. Later you will learn to build AI-based recommendation systems, a mobile app for sentiment analysis and a powerful chatbot for carrying customer services. You will implement AI techniques in the cybersecurity domain to generate Captchas. Later you will train and build autonomous vehicles to self-drive using reinforcement learning. You will be using libraries from the Python ecosystem such as TensorFlow, Keras and more to bring the core aspects of machine learning, deep learning, and AI. By the end of this book, you will be skilled to build your own smart models for tackling any kind of AI problems without any hassle.

Who is this book for?

This book is intended for data scientists, machine learning professionals, and deep learning practitioners who are ready to extend their knowledge and potential in AI. If you want to build real-life smart systems to play a crucial role in every complex domain, then this book is what you need. Knowledge of Python programming and a familiarity with basic machine learning and deep learning concepts are expected to help you get the most out of the book

What you will learn

  • Build an intelligent machine translation system using seq-2-seq neural translation machines
  • Create AI applications using GAN and deploy smart mobile apps using TensorFlow
  • Translate videos into text using CNN and RNN
  • Implement smart AI Chatbots, and integrate and extend them in several domains
  • Create smart reinforcement, learning-based applications using Q-Learning
  • Break and generate CAPTCHA using Deep Learning and Adversarial Learning
Estimated delivery fee Deliver to Canada

Economy delivery 10 - 13 business days

Can$24.95

Product Details

Country selected
Publication date, Length, Edition, Language, ISBN-13
Last updated date : Feb 11, 2025
Publication date : Jan 31, 2019
Length: 342 pages
Edition : 1st
Language : English
ISBN-13 : 9781788996921
Category :
Languages :
Tools :

What do you get with Print?

Product feature icon Instant access to your digital copy whilst your Print order is Shipped
Product feature icon Paperback book shipped to your preferred address
Product feature icon Redeem a companion digital copy on all Print orders
Product feature icon Access this title in our online reader with advanced features
Product feature icon DRM FREE - Read whenever, wherever and however you want
Product feature icon AI Assistant (beta) to help accelerate your learning
OR
Modal Close icon
Payment Processing...
tick Completed

Shipping Address

Billing Address

Shipping Methods
Estimated delivery fee Deliver to Canada

Economy delivery 10 - 13 business days

Can$24.95

Product Details

Last updated date : Feb 11, 2025
Publication date : Jan 31, 2019
Length: 342 pages
Edition : 1st
Language : English
ISBN-13 : 9781788996921
Category :
Languages :
Tools :

Packt Subscriptions

See our plans and pricing
Modal Close icon
$19.99 billed monthly
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Simple pricing, no contract
$199.99 billed annually
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just Can$6 each
Feature tick icon Exclusive print discounts
$279.99 billed in 18 months
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just Can$6 each
Feature tick icon Exclusive print discounts

Frequently bought together


Stars icon
Total Can$ 2,831.97
Intelligent Projects Using Python
Mex$902.99
Hands-On Artificial Intelligence for Beginners
Mex$1128.99
Mobile Artificial Intelligence Projects
Mex$799.99
Total Can$ 2,831.97 Stars icon

Table of Contents

11 Chapters
Foundations of Artificial Intelligence Based Systems Chevron down icon Chevron up icon
Transfer Learning Chevron down icon Chevron up icon
Neural Machine Translation Chevron down icon Chevron up icon
Style Transfer in Fashion Industry using GANs Chevron down icon Chevron up icon
Video Captioning Application Chevron down icon Chevron up icon
The Intelligent Recommender System Chevron down icon Chevron up icon
Mobile App for Movie Review Sentiment Analysis Chevron down icon Chevron up icon
Conversational AI Chatbots for Customer Service Chevron down icon Chevron up icon
Autonomous Self-Driving Car Through Reinforcement Learning Chevron down icon Chevron up icon
CAPTCHA from a Deep-Learning Perspective Chevron down icon Chevron up icon
Other Books You May Enjoy Chevron down icon Chevron up icon

Customer reviews

Rating distribution
Full star icon Full star icon Full star icon Full star icon Full star icon 5
(3 Ratings)
5 star 100%
4 star 0%
3 star 0%
2 star 0%
1 star 0%
Placeholder Mar 19, 2019
Full star icon Full star icon Full star icon Full star icon Full star icon 5
I am working in retail, especially "fast fashion" industry. Chapter 4: Style transfers using GAN is one of the use cases I am working on. This book talks about different variants of GAN such as DiscoGAN and CycleGAN in-depth. Really helpful for me.
Amazon Verified review Amazon
victor seletsky Jan 12, 2020
Full star icon Full star icon Full star icon Full star icon Full star icon 5
Great
Amazon Verified review Amazon
AnirbaN Jul 27, 2019
Full star icon Full star icon Full star icon Full star icon Full star icon 5
Really good
Amazon Verified review Amazon
Get free access to Packt library with over 7500+ books and video courses for 7 days!
Start Free Trial

FAQs

What is the digital copy I get with my Print order? Chevron down icon Chevron up icon

When you buy any Print edition of our Books, you can redeem (for free) the eBook edition of the Print Book you’ve purchased. This gives you instant access to your book when you make an order via PDF, EPUB or our online Reader experience.

What is the delivery time and cost of print book? Chevron down icon Chevron up icon

Shipping Details

USA:

'

Economy: Delivery to most addresses in the US within 10-15 business days

Premium: Trackable Delivery to most addresses in the US within 3-8 business days

UK:

Economy: Delivery to most addresses in the U.K. within 7-9 business days.
Shipments are not trackable

Premium: Trackable delivery to most addresses in the U.K. within 3-4 business days!
Add one extra business day for deliveries to Northern Ireland and Scottish Highlands and islands

EU:

Premium: Trackable delivery to most EU destinations within 4-9 business days.

Australia:

Economy: Can deliver to P. O. Boxes and private residences.
Trackable service with delivery to addresses in Australia only.
Delivery time ranges from 7-9 business days for VIC and 8-10 business days for Interstate metro
Delivery time is up to 15 business days for remote areas of WA, NT & QLD.

Premium: Delivery to addresses in Australia only
Trackable delivery to most P. O. Boxes and private residences in Australia within 4-5 days based on the distance to a destination following dispatch.

India:

Premium: Delivery to most Indian addresses within 5-6 business days

Rest of the World:

Premium: Countries in the American continent: Trackable delivery to most countries within 4-7 business days

Asia:

Premium: Delivery to most Asian addresses within 5-9 business days

Disclaimer:
All orders received before 5 PM U.K time would start printing from the next business day. So the estimated delivery times start from the next day as well. Orders received after 5 PM U.K time (in our internal systems) on a business day or anytime on the weekend will begin printing the second to next business day. For example, an order placed at 11 AM today will begin printing tomorrow, whereas an order placed at 9 PM tonight will begin printing the day after tomorrow.


Unfortunately, due to several restrictions, we are unable to ship to the following countries:

  1. Afghanistan
  2. American Samoa
  3. Belarus
  4. Brunei Darussalam
  5. Central African Republic
  6. The Democratic Republic of Congo
  7. Eritrea
  8. Guinea-bissau
  9. Iran
  10. Lebanon
  11. Libiya Arab Jamahriya
  12. Somalia
  13. Sudan
  14. Russian Federation
  15. Syrian Arab Republic
  16. Ukraine
  17. Venezuela
What is custom duty/charge? Chevron down icon Chevron up icon

Customs duty are charges levied on goods when they cross international borders. It is a tax that is imposed on imported goods. These duties are charged by special authorities and bodies created by local governments and are meant to protect local industries, economies, and businesses.

Do I have to pay customs charges for the print book order? Chevron down icon Chevron up icon

The orders shipped to the countries that are listed under EU27 will not bear custom charges. They are paid by Packt as part of the order.

List of EU27 countries: www.gov.uk/eu-eea:

A custom duty or localized taxes may be applicable on the shipment and would be charged by the recipient country outside of the EU27 which should be paid by the customer and these duties are not included in the shipping charges been charged on the order.

How do I know my custom duty charges? Chevron down icon Chevron up icon

The amount of duty payable varies greatly depending on the imported goods, the country of origin and several other factors like the total invoice amount or dimensions like weight, and other such criteria applicable in your country.

For example:

  • If you live in Mexico, and the declared value of your ordered items is over $ 50, for you to receive a package, you will have to pay additional import tax of 19% which will be $ 9.50 to the courier service.
  • Whereas if you live in Turkey, and the declared value of your ordered items is over € 22, for you to receive a package, you will have to pay additional import tax of 18% which will be € 3.96 to the courier service.
How can I cancel my order? Chevron down icon Chevron up icon

Cancellation Policy for Published Printed Books:

You can cancel any order within 1 hour of placing the order. Simply contact customercare@packt.com with your order details or payment transaction id. If your order has already started the shipment process, we will do our best to stop it. However, if it is already on the way to you then when you receive it, you can contact us at customercare@packt.com using the returns and refund process.

Please understand that Packt Publishing cannot provide refunds or cancel any order except for the cases described in our Return Policy (i.e. Packt Publishing agrees to replace your printed book because it arrives damaged or material defect in book), Packt Publishing will not accept returns.

What is your returns and refunds policy? Chevron down icon Chevron up icon

Return Policy:

We want you to be happy with your purchase from Packtpub.com. We will not hassle you with returning print books to us. If the print book you receive from us is incorrect, damaged, doesn't work or is unacceptably late, please contact Customer Relations Team on customercare@packt.com with the order number and issue details as explained below:

  1. If you ordered (eBook, Video or Print Book) incorrectly or accidentally, please contact Customer Relations Team on customercare@packt.com within one hour of placing the order and we will replace/refund you the item cost.
  2. Sadly, if your eBook or Video file is faulty or a fault occurs during the eBook or Video being made available to you, i.e. during download then you should contact Customer Relations Team within 14 days of purchase on customercare@packt.com who will be able to resolve this issue for you.
  3. You will have a choice of replacement or refund of the problem items.(damaged, defective or incorrect)
  4. Once Customer Care Team confirms that you will be refunded, you should receive the refund within 10 to 12 working days.
  5. If you are only requesting a refund of one book from a multiple order, then we will refund you the appropriate single item.
  6. Where the items were shipped under a free shipping offer, there will be no shipping costs to refund.

On the off chance your printed book arrives damaged, with book material defect, contact our Customer Relation Team on customercare@packt.com within 14 days of receipt of the book with appropriate evidence of damage and we will work with you to secure a replacement copy, if necessary. Please note that each printed book you order from us is individually made by Packt's professional book-printing partner which is on a print-on-demand basis.

What tax is charged? Chevron down icon Chevron up icon

Currently, no tax is charged on the purchase of any print book (subject to change based on the laws and regulations). A localized VAT fee is charged only to our European and UK customers on eBooks, Video and subscriptions that they buy. GST is charged to Indian customers for eBooks and video purchases.

What payment methods can I use? Chevron down icon Chevron up icon

You can pay with the following card types:

  1. Visa Debit
  2. Visa Credit
  3. MasterCard
  4. PayPal
What is the delivery time and cost of print books? Chevron down icon Chevron up icon

Shipping Details

USA:

'

Economy: Delivery to most addresses in the US within 10-15 business days

Premium: Trackable Delivery to most addresses in the US within 3-8 business days

UK:

Economy: Delivery to most addresses in the U.K. within 7-9 business days.
Shipments are not trackable

Premium: Trackable delivery to most addresses in the U.K. within 3-4 business days!
Add one extra business day for deliveries to Northern Ireland and Scottish Highlands and islands

EU:

Premium: Trackable delivery to most EU destinations within 4-9 business days.

Australia:

Economy: Can deliver to P. O. Boxes and private residences.
Trackable service with delivery to addresses in Australia only.
Delivery time ranges from 7-9 business days for VIC and 8-10 business days for Interstate metro
Delivery time is up to 15 business days for remote areas of WA, NT & QLD.

Premium: Delivery to addresses in Australia only
Trackable delivery to most P. O. Boxes and private residences in Australia within 4-5 days based on the distance to a destination following dispatch.

India:

Premium: Delivery to most Indian addresses within 5-6 business days

Rest of the World:

Premium: Countries in the American continent: Trackable delivery to most countries within 4-7 business days

Asia:

Premium: Delivery to most Asian addresses within 5-9 business days

Disclaimer:
All orders received before 5 PM U.K time would start printing from the next business day. So the estimated delivery times start from the next day as well. Orders received after 5 PM U.K time (in our internal systems) on a business day or anytime on the weekend will begin printing the second to next business day. For example, an order placed at 11 AM today will begin printing tomorrow, whereas an order placed at 9 PM tonight will begin printing the day after tomorrow.


Unfortunately, due to several restrictions, we are unable to ship to the following countries:

  1. Afghanistan
  2. American Samoa
  3. Belarus
  4. Brunei Darussalam
  5. Central African Republic
  6. The Democratic Republic of Congo
  7. Eritrea
  8. Guinea-bissau
  9. Iran
  10. Lebanon
  11. Libiya Arab Jamahriya
  12. Somalia
  13. Sudan
  14. Russian Federation
  15. Syrian Arab Republic
  16. Ukraine
  17. Venezuela
Modal Close icon
Modal Close icon