46
@
2018/7/1
◾ ea466 :
◾
// - - /
◾ 4 b
◾
f
. /
semantic segmentation
semantic segmentation
l
DenseASPP
Cycle-Shape-GAN
M. Yang, et. al. ” DenseASPP for Semantic Segmentation in Street
Scenes
Z. Zhang, et. al. ”Translating and Segmenting Multimodal Medical
Volumes with Cycle- and Shape-Consistency Generative
Adversarial Network”
DenseASPP
M. Yang, et. al. ” DenseASPP for Semantic Segmentation in
Street Scenes”
CVF URL
http://openaccess.thecvf.com/content_cvpr_2018/papers/Yang
_DenseASPP_for_Semantic_CVPR_2018_paper.pdf
https://github.com/masataka46/DenseASPP-chainer
DenseASPP
DenseASPP
DenseASPP DenseNet ASPP
DenseNet
DenseASPP DenseNet ASPP
G. Huang, et. al. “Densely Connected Convolutional Networks”
CVPR2017
l
ASPP
DenseASPP DenseNet ASPP
F. Yu, et. al. “Multi-scale context aggregation by dilated
convolutions ” ICLR2016
l Atrous convolution dilated
convolution
l
http://deeplearning.net/software/the
ano/tutorial/conv_arithmetic.html
ASPP
DenseASPP DenseNet ASPP
l dilation rate
L. Chen, et. al. “Rethinking Atrous
Convolution for Semantic Image Segmentation”
ASPP
DenseASPP DenseNet ASPP
L. Chen, et. al. “Rethinking Atrous Convolution for Semantic
Image Segmentation”
l Atrous
convolution
ASPP
DenseASPP DenseNet ASPP
ASPP
DenseASPP DenseNet ASPP
M. Yang, et. al. ” DenseASPP for Semantic Segmentation in
Street Scenes” CVPR2018
l Atrous
convolution Densely
ASPP
DenseASPP DenseNet ASPP
M. Yang, et. al. ” DenseASPP for Semantic Segmentation in
Street Scenes” CVPR2018
l Atrous convolution
Densely
DenseASPP
atrous-conv
dilation rate 3 dilation rate6
3×2 + 6×2 + 1 = 19 (pixel)
DenseASPP
atrous conv
dilation rate 3, 6, 12, 18, 19 atrous conv
3×2 + 6×2 + 12×2 + 18×2 + 24×2 + 1 = 127 (pixel)
DenseASPP
densely scale
DenseASPP
l
l segmentation
CityScape datasets state-of-the-art
s
→
Chainer
https://github.com/masataka46/DenseASPP-chainer
Atrous convolution Dilated convolution L.DilatedConvolution2D
DilatedConv concat
CityScape dataset
Dilated Conv conv
DenseASPP
1 epoch 50 epoch
50 epoch
ground
truth
ground
truth
DenseASPP
l DenseASPP DenseNet ASPP
l
Cycle-Shape-GAN
Z. Zhang, et. al. ”Translating and Segmenting Multimodal
Medical Volumes with Cycle- and Shape-Consistency
Generative Adversarial Network”
arXiv URL
https://arxiv.org/abs/1802.09655
Chainer
https://github.com/masataka46/Cycle-Shape-GAN-chainer
Cycle-Shape-GAN
Cycle-Shape-GAN
Cycle-Shape-GAN Cycle-GAN Shape
Cycle-GAN
GAN
J. Y. Zhu, et. al. Unpaired Image-to-Image Translation using Cycle-
Consistent Adversarial Networks
• Generator X
• Generator Y
Cycle-GAN
→
Cycle-GAN
Generator Y Generator X
→
Cycle-GAN
MRI CT
→
CT
MRI
Cycle-Shape-GAN
Cycle-Shape-GAN Segmentor
Segmentor segment
→
Segmentor
X
Segmentor
Y
CTMRI
Chainer
https://github.com/masataka46/Cycle-Shape-GAN-chainer
Cycle-GAN Cycle-Shape-GAN
Generator X
Generator Y
Discriminator X
Discriminator Y
Generator X
Generator Y
Discriminator X
Discriminator Y
Segmentor X
Segmentor Y
Segmentor
Class
Class
Class
Class
Class
Class
Class
Class
Class
Class
Chainer
Cycle-GAN Cycle-Shape-GAN
Segmentor loss
!"#"$% = !$'( + !*+*%, + !-,.!"#"$% = !$'( + !*+*%,
https://github.com/masataka46/Cycle-Shape-GAN-chainer
Chainer
Cycle-GAN Cycle-Shape-GAN
Segmentor
https://github.com/masataka46/Cycle-Shape-GAN-chainer
Cycle-GAN
CityScape annotation
300
300
U-Net ResNet
Cycle-GAN
Cycle-GAN
Cycle-GAN Cycle-Shape-GAN10 epoch 10 epoch
→
→ → →
→ →
Cycle-GAN Cycle-Shape-GAN
→
→ → →
→ →
Cycle-Shape-GAN segmentation
Cycle-Shape-GAN Cycle-Shape-GAN1 epoch 60 epoch
(1 epoch) 60 epoch segment
ground
truth
ground
truth
ground
truth
ground
truth
Cycle-Shape-GAN
l Cycle-Shape-GAN Cycle-GAN segmentor
l
第46回コンピュータ・ビジョン勉強会@関東(前編)

第46回コンピュータ・ビジョン勉強会@関東(前編)