Skip to content

fix: LabelEncoder params consistent with Sklearn #60

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 5 commits into from
Sep 26, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
20 changes: 20 additions & 0 deletions bigframes/ml/base.py
Original file line number Diff line number Diff line change
Expand Up @@ -195,3 +195,23 @@ def fit_transform(
y: Optional[Union[bpd.DataFrame, bpd.Series]] = None,
) -> bpd.DataFrame:
return self.fit(X, y).transform(X)


class LabelTransformer(BaseEstimator):
"""A BigQuery DataFrames Label Transformer base class that transforms data.

Also the transformers can be attached to a pipeline with a predictor."""

@abc.abstractmethod
def fit(self, y):
pass

@abc.abstractmethod
def transform(self, y):
pass

def fit_transform(
self,
y: Union[bpd.DataFrame, bpd.Series],
) -> bpd.DataFrame:
return self.fit(y).transform(y)
17 changes: 8 additions & 9 deletions bigframes/ml/preprocessing.py
Original file line number Diff line number Diff line change
Expand Up @@ -315,7 +315,7 @@ def transform(self, X: Union[bpd.DataFrame, bpd.Series]) -> bpd.DataFrame:


class LabelEncoder(
base.Transformer,
base.LabelTransformer,
third_party.bigframes_vendored.sklearn.preprocessing._label.LabelEncoder,
):
# BQML max value https://cloud.google.com/bigquery/docs/reference/standard-sql/bigqueryml-syntax-one-hot-encoder#syntax
Expand Down Expand Up @@ -401,16 +401,15 @@ def _parse_from_sql(cls, sql: str) -> tuple[LabelEncoder, str]:

def fit(
self,
X: Union[bpd.DataFrame, bpd.Series],
y=None, # ignored
y: Union[bpd.DataFrame, bpd.Series],
) -> LabelEncoder:
(X,) = utils.convert_to_dataframe(X)
(y,) = utils.convert_to_dataframe(y)

compiled_transforms = self._compile_to_sql(X.columns.tolist())
compiled_transforms = self._compile_to_sql(y.columns.tolist())
transform_sqls = [transform_sql for transform_sql, _ in compiled_transforms]

self._bqml_model = self._bqml_model_factory.create_model(
X,
y,
options={"model_type": "transform_only"},
transforms=transform_sqls,
)
Expand All @@ -419,13 +418,13 @@ def fit(
self._output_names = [name for _, name in compiled_transforms]
return self

def transform(self, X: Union[bpd.DataFrame, bpd.Series]) -> bpd.DataFrame:
def transform(self, y: Union[bpd.DataFrame, bpd.Series]) -> bpd.DataFrame:
if not self._bqml_model:
raise RuntimeError("Must be fitted before transform")

(X,) = utils.convert_to_dataframe(X)
(y,) = utils.convert_to_dataframe(y)

df = self._bqml_model.transform(X)
df = self._bqml_model.transform(y)
return typing.cast(
bpd.DataFrame,
df[self._output_names],
Expand Down
30 changes: 5 additions & 25 deletions tests/system/small/ml/test_preprocessing.py
Original file line number Diff line number Diff line change
Expand Up @@ -357,9 +357,9 @@ def test_one_hot_encoder_different_data(penguins_df_default_index, new_penguins_

def test_label_encoder_default_params(new_penguins_df):
encoder = bigframes.ml.preprocessing.LabelEncoder()
encoder.fit(new_penguins_df[["species", "sex"]])
encoder.fit(new_penguins_df["species"])

result = encoder.transform(new_penguins_df).to_pandas()
result = encoder.transform(new_penguins_df["species"]).to_pandas()

# TODO: bug? feature columns seem to be in nondeterministic random order
# workaround: sort columns by name. Can't repro it in pantheon, so could
Expand All @@ -368,11 +368,6 @@ def test_label_encoder_default_params(new_penguins_df):

expected = pd.DataFrame(
{
"labelencoded_sex": [
2,
1,
1,
],
"labelencoded_species": [
1,
1,
Expand All @@ -389,7 +384,7 @@ def test_label_encoder_default_params(new_penguins_df):
def test_label_encoder_default_params_fit_transform(new_penguins_df):
encoder = bigframes.ml.preprocessing.LabelEncoder()

result = encoder.fit_transform(new_penguins_df[["species", "sex"]]).to_pandas()
result = encoder.fit_transform(new_penguins_df[["species"]]).to_pandas()

# TODO: bug? feature columns seem to be in nondeterministic random order
# workaround: sort columns by name. Can't repro it in pantheon, so could
Expand All @@ -398,11 +393,6 @@ def test_label_encoder_default_params_fit_transform(new_penguins_df):

expected = pd.DataFrame(
{
"labelencoded_sex": [
2,
1,
1,
],
"labelencoded_species": [
1,
1,
Expand Down Expand Up @@ -444,7 +434,7 @@ def test_label_encoder_series_default_params(new_penguins_df):

def test_label_encoder_params(new_penguins_df):
encoder = bigframes.ml.preprocessing.LabelEncoder(100, 2)
encoder.fit(new_penguins_df[["species", "sex"]])
encoder.fit(new_penguins_df[["species"]])

result = encoder.transform(new_penguins_df).to_pandas()

Expand All @@ -455,11 +445,6 @@ def test_label_encoder_params(new_penguins_df):

expected = pd.DataFrame(
{
"labelencoded_sex": [
0,
0,
0,
],
"labelencoded_species": [
0,
0,
Expand All @@ -475,7 +460,7 @@ def test_label_encoder_params(new_penguins_df):

def test_label_encoder_different_data(penguins_df_default_index, new_penguins_df):
encoder = bigframes.ml.preprocessing.LabelEncoder()
encoder.fit(penguins_df_default_index[["species", "sex"]])
encoder.fit(penguins_df_default_index[["species"]])

result = encoder.transform(new_penguins_df).to_pandas()

Expand All @@ -486,11 +471,6 @@ def test_label_encoder_different_data(penguins_df_default_index, new_penguins_df

expected = pd.DataFrame(
{
"labelencoded_sex": [
3,
2,
2,
],
"labelencoded_species": [
1,
1,
Expand Down
12 changes: 6 additions & 6 deletions third_party/bigframes_vendored/sklearn/preprocessing/_label.py
Original file line number Diff line number Diff line change
Expand Up @@ -28,23 +28,23 @@ class LabelEncoder(BaseEstimator):
Default None, set limit to 1,000,000.
"""

def fit(self, X):
"""Fit LabelEncoder to X.
def fit(self, y):
"""Fit label encoder.

Args:
X (bigframes.dataframe.DataFrame or bigframes.series.Series):
y (bigframes.dataframe.DataFrame or bigframes.series.Series):
The DataFrame or Series with training data.

Returns:
LabelEncoder: Fitted encoder.
"""
raise NotImplementedError(constants.ABSTRACT_METHOD_ERROR_MESSAGE)

def transform(self, X):
"""Transform X using label encoding.
def transform(self, y):
"""Transform y using label encoding.

Args:
X (bigframes.dataframe.DataFrame or bigframes.series.Series):
y (bigframes.dataframe.DataFrame or bigframes.series.Series):
The DataFrame or Series to be transformed.

Returns:
Expand Down