対話における商品の営業
佐藤 元紀|Motoki	
  Sato	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
対 話 E C
NAIST	
  (M1)	
  
Preferred	
  Networks	
  Summer	
  Internship,	
  2016
(Mentors:	
  Unno-­‐san,	
  Fukuda-­‐san)
Introduction
l Recently,	
  	
  chat-­‐bots	
  are	
  used	
  in	
  many	
  field.
l Chat-­‐bot will	
  be	
  used	
  to	
  sell	
  products	
  online.	
  
2
Background
My	
  Internship	
  theme
l Explain	
  why	
  this	
  product	
  is	
  recommended	
  to	
  you.
l Generate	
  sentences	
  which explain	
  attractiveness	
  of	
  products.
商品の
特徴⽂文
ユーザに
おすすめな
理理由⽂文
Inference…?
Product	
  feature	
  sentence	
   Reason	
  sentence
Data 3
l Find	
  Travel (Curation	
  web	
  site	
  in	
  travel	
  domain)
l Articles	
  have	
  many	
  attractive	
  spots	
  in	
  Japan.
l Spot	
  Data	
  :	
  	
  67,477	
  (spot,	
  hotel,	
  cafe)
Spot	
  name description information Image	
  URL
http://find-­‐travel.jp/
Data  Processing 4
l Split text	
  to	
  sentences.
l Extract	
  “reasoning	
  sentence” include	
  word	
  “なので” or	
  “ので”	
  (heuristic)	
  
– Number	
  of	
  sentences	
  :	
  	
  144,032
– Sentence	
  Examples	
  :	
  
User	
  Value
Fact	
  
(spot	
  feature	
  sentence)
→
なので
Model
l Sequence-­‐to-­‐Sequence Model	
  with	
  Attention
[Cho	
  et	
  al.,	
  2014,	
  Bahdanau et	
  al.,	
  2014]
l We	
  train	
  two	
  difference	
  networks.	
  
(1.	
  Normal	
  and	
  	
  2.Reverse)
5
Input:
output:
Hidden	
  unit 400
Network 1	
  layer	
  bi-­‐LSTM
Batch	
  size 100
Optimizer Adam
User	
  
Value
Fact
1.	
  Normal
Input:
output:
User	
  
Value
Fact
2.	
  Reverse
DEMO  (1) 6Normal	
  	
  	
  	
  (A	
  → B)
Input Output
Attention	
  Examples:
DEMO  (2) 7Reverse	
  	
  	
  	
  (A	
  ← B)
OutputInput
Attention	
  Examples:
DEMO  (3)    Spot  Search 8
Vector	
  Space Paragraph	
  Vector
(Skip-­‐gram	
  like)
Epoch 500
Window	
  size 15
Optimizer SGD
Conclusions
l We	
  build	
  Neural	
  Sequence-­‐to-­‐Sequence	
  model	
  to	
  explain	
  product	
  by	
  
sentence.
l Attention	
  alignment	
  work	
  so	
  good
l Attention	
  with	
  Databese or	
  Knowledge	
  Base	
  [Pengcheng Yin,	
  2016]	
  (QA)
Pengcheng Yin,	
  Zhengdong Lu,	
  Hang	
  Li,	
  Ben	
  Kao.	
  “Neural	
  Enquirer:	
  Learning	
  to	
  Query	
  Tables	
  with	
  Natural	
  
Language”	
  IJCAI	
  2016	
  	
  
l Spot	
  search	
  using	
  Reinforcement	
  Learning	
  (user	
  feedback	
  signal)
9
Future	
  Work

対話における商品の営業

  • 1.
    対話における商品の営業 佐藤 元紀|Motoki  Sato                     対 話 E C NAIST  (M1)   Preferred  Networks  Summer  Internship,  2016 (Mentors:  Unno-­‐san,  Fukuda-­‐san)
  • 2.
    Introduction l Recently,    chat-­‐bots  are  used  in  many  field. l Chat-­‐bot will  be  used  to  sell  products  online.   2 Background My  Internship  theme l Explain  why  this  product  is  recommended  to  you. l Generate  sentences  which explain  attractiveness  of  products. 商品の 特徴⽂文 ユーザに おすすめな 理理由⽂文 Inference…? Product  feature  sentence   Reason  sentence
  • 3.
    Data 3 l Find  Travel (Curation  web  site  in  travel  domain) l Articles  have  many  attractive  spots  in  Japan. l Spot  Data  :    67,477  (spot,  hotel,  cafe) Spot  name description information Image  URL http://find-­‐travel.jp/
  • 4.
    Data  Processing 4 lSplit text  to  sentences. l Extract  “reasoning  sentence” include  word  “なので” or  “ので”  (heuristic)   – Number  of  sentences  :    144,032 – Sentence  Examples  :   User  Value Fact   (spot  feature  sentence) → なので
  • 5.
    Model l Sequence-­‐to-­‐Sequence Model  with  Attention [Cho  et  al.,  2014,  Bahdanau et  al.,  2014] l We  train  two  difference  networks.   (1.  Normal  and    2.Reverse) 5 Input: output: Hidden  unit 400 Network 1  layer  bi-­‐LSTM Batch  size 100 Optimizer Adam User   Value Fact 1.  Normal Input: output: User   Value Fact 2.  Reverse
  • 6.
    DEMO  (1) 6Normal        (A  → B) Input Output Attention  Examples:
  • 7.
    DEMO  (2) 7Reverse        (A  ← B) OutputInput Attention  Examples:
  • 8.
    DEMO  (3)   Spot  Search 8 Vector  Space Paragraph  Vector (Skip-­‐gram  like) Epoch 500 Window  size 15 Optimizer SGD
  • 9.
    Conclusions l We  build  Neural  Sequence-­‐to-­‐Sequence  model  to  explain  product  by   sentence. l Attention  alignment  work  so  good l Attention  with  Databese or  Knowledge  Base  [Pengcheng Yin,  2016]  (QA) Pengcheng Yin,  Zhengdong Lu,  Hang  Li,  Ben  Kao.  “Neural  Enquirer:  Learning  to  Query  Tables  with  Natural   Language”  IJCAI  2016     l Spot  search  using  Reinforcement  Learning  (user  feedback  signal) 9 Future  Work